
IOPASM ManualJohan JörgensenJohan.Jorgensen�axis.omMay 16, 2006

1

Contents1 Introdution to IOPASM 12 IOPASM usage 12.1 Command-line swithes . 12.2 Arhiteure spei� ommand line options 32.3 Assembly-language syntax . 32.3.1 Assembler diretives . 32.3.2 Sequential mode syntax 32.3.3 FSM mode syntax . 52.4 C Maro generation . 72.5 The FSM memory optimizer . 82.5.1 The FSM optimization proess 9A Warnings & Errors 9

1 Introdution to IOPASMThis manual ontains a brief introdution to IOPASM, the assembler for theI/O Proessor SPUs and MPU. The following issues are overed:
• IOPASM ommand line Desribes various ommand line options and theirmeaning
• IOPASM syntax The assembler syntax
• Extending IOPASM A short how-to desribing the steps required to adda new proessor arhiteture to IOPASM2 IOPASM usageIOPASM is the primary CUI1 based development tool for the I/O Proessor. Ithas the following features
• Fully integrated and seamless C-preproessing support
• Supports all SPU & MPU instrutions
• Fully integrated linker
• FSM memory utilization optimizer
• Rule-based ode generators2.1 Command-line swithesThe following swithes are reognized by the assembler:

−− (C preproessor diretives) Pass all ommand line options after swiththis to the C preproessor. Should be spei�ed last on the ommand line
−−allow-unde�ned-symbols Assign the value 0 to all symbols that is leftunde�ned in the urrent program
−−arh (-M) arh Selet arhiteture. Arh is the name of the arhitetureand an be either MPU or SPU
−−assemble-only (-) Instruts the assembler to only run through the parserand intermediate ode-generation stages. The output result will always bean objet �le (Implies: -t objet)
−e error-referene Causes the on�gurable error referened by error-refereneto generate an error i.e. -eunaligned-64bit-inst1Charater based U ser Interfae 1

−−generate--maros �le Generate C-maros for the spei�ed arhiteture.These C-maros an be used to generate op-odes in -programs for aspei� arhiteture (see setion 2.4 for further details)
−−inlude-path (-I) IOPASM does not use any-prede�ned paths to inlude-�les per default. Use this swith to add a path to the pp diretives
−−list-�le �le Generate a program listing and store it in �le . The list �leshows the ode generated by the assembler for a spei� input-�le andarhiteture
−−link-only (-l) Invoke the integrated linker and skip the parser. This is usedto link several objet �les into one binary �le
−m mahine−option Pass arhiteture spei� option to the bak-end andswith it on i.e. -mauto-align-64bit-inst
−n error−referene The on�gurable error referened by error-referene willbe ignored and neither an error nor a warning is emitted (please see −eand −w)
−−namespae namespae Set the name spae for symbols. This is done byappending namespae to all symbols de�ned in the program
−−no-pp Do not use the C pre-proessor
−−optimize-fsm Invoke the FSM memory optimizer
−−output-�le (-o) �le Save output in �le (required)
−−output-format (-t) format Speify output-format. One of the followingpossible formats may be spei�ed:binary Plain binary format, for distribution useobjet Save output as objet-�le.vlog64 Save output in VCS-readable format (64-bits/row)vlog256 Save output in VCS-readable format (256-bits/row)
−−preload-objet �le Load objet �le �le prior to running soure throughparser
−−preload-symbol-�le �le Load the symbol �le named �le prior to parsingthe soure �le
−−symbol-�le (-s) �le Speify name of symbol-�le
−−symbol-�le-format format Speify output format for symbol �le spei-�ed with −−symbol-�le.. The following formats are supported:plain Simple row-based format used by IOPASM2

header Save symbol de�nitions in C-header �le
−−verbose (-v) Be a little verbose. The assembler will emit additional infor-mation about assembler stages, optimization information et
−w error-referene The on�gurable error/warning referened by error-referenewill ause a warning instead of an error (eg. -wunaligned-64bit-inst)
−−with-builtin-inludes Use the pre-de�ned built-in inlude paths whenalling the C pre-proessor (these are set in the iopasm make�le)2.2 Arhiteure spei� ommand line optionsThe tables 1 and 2 list all the mahine dependent options that an be passed tothe SPU and MPU arhiteture. All of these options are invoked using the −mswith, and are swith o� by default. Th The SPU does not have any mahine-Command line swith Explanationauto-align-64bit-inst Fore the MPU ode generator to align 64-bit in-strutions automatiallyTable 1: MPU spei� ommand line �agsCommand line swith Explanation- No ommand line swithes has been de�ned for theSPUTable 2: SPU spei� ommand line �agsspei� options at present time. The FSM optimizer is partly built in to thebak end, but ertain parts of it is arhiteture independent.2.3 Assembly-language syntaxThe assembly-language syntax used by IOPASM is very simple. Two di�er-ent modes are supported: FSM and sequential mode. The two modes an bemixed in the same soure-�le seamlessly, provided that the seleted arhiteturesupports the FSM mode.2.3.1 Assembler diretivesThe assembler supports the following diretives:2.3.2 Sequential mode syntaxThe format of the sequential will not be desribed in great detail here as itlosely resembles that of the GNU Assembler for the CRIS arhiteture (gas).3

Operand Desription.align boundrary Align next instrution to the boundrary spe-i�ed by boundrary (measured in bits).dword expression Convert expression to a 32-bit integer andstore it at urrent loation.end Mark end of �le (Required).fsm Swith to FSM mode.org address Set PC for next instrution.seq Swith to sequential modeTable 3: Assembler diretives (pseudo operandsAs the reader of this doument is assumed to be familiar with assemblers andgas, only a brief introdution will be given. For a list of supported instrutionsand their operands, please refer to [1℄. Below is a simple example of sequentialode: .seq ; 1 - not neessarya_label: moveq 0x10,r0 ; 2 - Hexadeimal numbermoveq $1A,R2 ; 3 - Same as abovemoveq 10,r5 ; 4 - Deimal immediatemoveq \%100_1001_11,r6 ; 5 - Binary immediateaddq (((7 + 4) << 3) / 2),r1,r2 ; 6 - Complex operandaddq r1,(((7 + 4) << 3) / 2),r2 ; 7 - operand transforms1: nop ; 8 - Loal labels are supportedaddq r7,(a_label << 2) + 4, r8 ; 9 - Labels an be usedmoveq a_label,r4 ; 10 - Labels are immediatesba a_label ; 11 - Rule preursornop ; 12 - Delay slot rulesba 1b ; 13 - Use of loal labels (bakward)nop ; 14 - standard delay slotba 2f ; 15 - Use of loal labels (forward)nop ; 16 - Standard delay slot2: nop ; 17 - Loal label definition.endThe example above exampli�es the following features of the assembler:
• Numbers an be written in either hexadeimal, deimal or binary format.The tokens:0x or $ are the pre�x for hexadeimal numbers% The % sign is the pre�x for binary digits. Binary digits an be groupedthrough use of the _ i.e. the deimal number 160 an be written as%1010_0000 in binary formDeimal numbers do not require a pre�x4

• Operands an be omplex arithmetri expressions as long as the expressionevaluates to a onstant one label addresses have been alulated (line 6and 9)
• The assembler performs operand-transformations. Lines 6 and 7 will gen-erate exatly the same op-ode. This is only supported in instrutionswhere the result of the transformation is unambigous
• Labels are generally treated like immediates, however the value of a labelis not alulated before stage 6 line 9
• Loal labels an be reused. Loal labels are referened by ombining thenumber of the label with the letters bakward or f orward
• Certain instrutions have di�erent rules assoiated with them. All branhinstrutions must have an instrution in the delay-slot otherwise a warningis generated.2.3.3 FSM mode syntaxThe FSM syntax looks like the following:state_name : optional_flags ; Optionalseq sequential instrution ; Optionaltimer instrution ; Optional0-8 state transitionsThe supported �ags are shown in table The states transitions are built fromInstrution �eld IOPASM Syntax Desriptionbreak fsm_halt Set breakpoint �ag. Should generally not beuseddo_seq do_seq The sequential instrution will be exeuted ev-ery yle while this state is ative. Do not usethis �ag if no sequential instrution is presentgo_seq go_seq Swith to sequential modesel_inputs inp = value Set value of input seletor. The value is a 4-bitnumber See [1℄sel_outputs outp = value Set value of output seletor. The value is an8-bit number See [1℄ Event Mask emask = value Set value of the Event mask register. Thevalue is a 4-bit number interpreted as a vetorSee [1℄Event Update Mask umask = value Set value of event update �eld. The value is a4-bit number interpreted as a vetor See [1℄Table 4: Supported �ags in iopasm5

three di�erent omponents aording to the following:input : outputs : next_stateThe input-�eld is oded using the values 0, 1 and ?. The interpretation of thesevalues are 0, 1 and do not are respetively.The output-�eld has an additional spei�er: p whih is short for pulse (apulse generally lasts one yle). Speifying a p will result in a pulse beinggenerated on the output. An example is shown below0_1_1_? : ?_0_1_p : state_4The statement above will be interpreted aording to the following:1. Seleted input bits 3, 2, 1 and 0 should be 0, 1, 1, X (do not are) respe-tively2. Seleted output bits 2 and 1 will be set to 0 and 1 respetively. Bit 3 willremain unhanged and a pulse will be generated on bit 03. Next state to be exeuted is state_4Two speial state transition statements an also be used:
• Only state_4 - Used in onjuntion with sequential instrutions to set theseq_only2 �ag and thus generate a ompat instrution
• Always state_4 - This is a built-in maro that will be expanded to thefollowing: ?_?_?_? : ?_?_?_? : state_4The last element of a state transition is the timer element. A timer statementhas the following syntax:timer timer_value : output_onditions : next_stateThe only new element here is the timer_value. This �eld an be either a registeror an integer. Thus both of the following statements are valid timer statements:timer r0 : 1_0_0_0 : state_4timer 1000 : 0_0_0_0 : state_5The priority of timers is implied by the relative position within the state-desription. If timer statements are preeeded by always or state-transitionstatements the priority is set to zero. This is shown in the example below:state_3 : timer r0 : 1_0_0_1 : state_4 ; Timer priority impliitly set to 1state_4 :2For further details see hapter 13 in the ETRAX FS designers referene6

1_0_0_1 : 1_0_1_1 : state_3timer 1000 : 1_1_1_0 : state_3 ; Timer priority impliitly set to 0The assembler always starts in sequential mode. As the parser stage is totallyindependent from the ode generation stages FSM-mode will be orretly parsed.However the ode generator will report an error if the seleted arhiteture(seleted at invoation using the -M or −−arh swithes) does not supportFSM ode. The overall struture of a soure�le is shown in the example below:; The assembler starts in sequential mode per defaultfoo: move r0,r1addq 10,r1,r2ba no_bar ; (bar is branh register)nop.fsm ; Swith to fsm modestate_1: do_seqinp = 4outp = 0xffseq addq 1,r1,r2only state_2state_2: timer r2 : ?_1_1_0 : state_1 ; Timer priority impliitly set to 1.seq ; More sequential odeno_bar: addq r2,10,r2ba foo.end ; File ends here2.4 C Maro generationThe ability to generate C-maros for all instrutions and registers de�ned in thearhiteture of the SPU and MPUs is a unique feature of IOPASM. IOPASMgenerates these maros aording to a set of built-in rules as ertain instrutionshave di�erent op-odes depending on the type of operand. Three di�erent typesof operands are de�ned:I Argument is an integerR Argument is a registerS Argument is a speial register 7

The operand type is onatenated to the maro in order to di�erentiate marosfrom eah other, thus indiating what type, and how many arguments the maroexpets. Eah maro is prepended by a pre�x whih is arhiteture spei�. Thepre�x for the MPU is MPU_ and the pre�x for the SPU is SPU_.As an example, let us assume that we want to use a maro to generate theMPU-spei� opode for moveq 0x10,R0. This leads us to the following maro:1. The maro should work generate a valid MPU-opode, so the pre�x isMPU_2. The maro should take two [maro℄ arguments, as the instrution has twooperands.3. The instrution operands are one immediate and one register, so theargument-su�x of the maro should be _IRThe maro MPU_MOVEQ_IR(...) is thus the orret maro. To generate theopode for moveq 0x10,R0 and assign the result to the variable �op_ode�, themaro should be invoked like this:op_ode = MPU_MOVEQ_IR(0x10,R0);The maros does not support any range-heking for immediates. However in-tegers are rounded down. If the integer is out of range, the used value shouldbe onsidered to be erroneous.2.5 The FSM memory optimizerThis setion overs the FSM memory optimizer. The setion only gives anintrodutory overview to the optimization algorithm, as it is deemed importantto gain a rough understanding of the algorithm in order to be able to use it. Tosummarize, the FSM optimizer serves two important purposes:
• Saves SPU memory through memory �hole� elimination
• Removes the limitations imposed by the SPUs banked memoryThe �holes� in the memory map is a result of the memory being fragmenteddue to the fat that the assembler will assemble ode in the same sequene asit �nds it in the soure �le. As sequential and FSM ode an be freely mixedthe result is that the SPU memory is littered with �holes� required to align thevarious ode fragments properly. The �rst step taken by the optimizer is thus torepak all sequential ode at the low end of the memory map. It should be notedthat all org and align instrutions are removed. All labels will be realulated,so the optimization proess is opaque to the programmer.8

2.5.1 The FSM optimization proessThe FSM optimization proess is a lot more ompliated than the sequentialmemory optimization stage (whih is really just a reloation). In short thisproess an be divided into 5 di�erent steps:State identi�ation During this phase the various states are identi�ed and astate dependeny matrix is builtState interdependeny alulation From the state dependeny matrix anumber of sets are built. These sets ontain all the states that are de-pendent on eah other. A speial set for states that have no dependeniesare also reated. These sets are referred to as optimizer setsOptimizer set minimization During this phase all sets are mathed againsteah other so that S0 ∪ S1 → S0 = {S0, S1}.Set partitioning The number of sets left after the set minimization proessis then partitioned on the remaining amount of memory. The algorithmontinuously tries to �t the largest possible set into the remaining area ofthe memory banks.State layout During this phase states are laid out in memory so that eahrow in memory is ompletely �lled. States are seleted from the partitionsgiven by the set partitioning stateEmpirial data shows that the state optimization proess will save a pro-grammer around 15% of the SPU memory. As an additional bene�t the pro-grammer does not have to think about where in the memory the various statesare plaed making it possible to write ode that is totally reloation independent.The negative side e�et indued by the optimizer is that all ode is om-pletely reorganized. This makes the ode rather hard to follow as the ode isno longer formatted in a human readable manner.Referenes[1℄ Axis Communiations AB, ETRAX FS Designers referene,http://developer.axis.om/do/hw/etraxfs/des_ref/des_ref_060120.pdf,2006A Warnings & ErrorsWarnings and errors are divided into groups. Tables 6 and 5 list the variouserrors and warnings and provides a brief explanation for the error. All warningsare on�gurable and their behaviour an be ontrolled by the −e, −w and −nswithes. 9

Referene name Default state Desriptiondest-reg-usage o� Destination register may be used in an inorret way(i.e. forwarding would use the old register)delay-slot-usage o� Delay slot may hold inorret insstrution sequeneunaligned-64bit-inst o� The 64-bit insstrution is not aligned to a 64-bitboundrarystate-terminated o� The state might have been prematurely terminatedby a �.fsm� statementreti-rw-rr-sequene Error rw instrution found in delay slot of �reti�. If thenext instrution is an �rw� instrution the MPU willrashTable 5: Con�gurable errors, their referene names and their default state

10

Error # Error Desription101 Unsupported arhiteture Arhiteture spei�ed as an argument to -M or
−−arh is not supported102 Fork failed This is an internal IOPASM error indiating that thesystem-all fork() failed. This should never happen103 pp exeution failed This is an internal IOPASM error indiating that ppould not be exeuted104 Report bug Simple ath-all error, indiating that IOPASMs in-ternal databases are inonsistent105 pp stage failed pp did not exit suessfully. Probably due to aparser-error106 memory region used An already used memory region is being reused107 Invalid ode size Size of generated ode does not math the size al-ulated108 Cannot write �le Cannot write to �le109 Syntax error Syntax error in soure �le110 Unde�ned label Label was not de�ned111 Input �le missing The assembler did not �nd an input �le112 Unde�ned forward loallabel Forward referening loal label not found before endof �le113 Unde�ned bakward loallabel Bakward referensing loal label not found before af-ter start of �le114 Input �le is empty Assembler invoked on an empty input �le115 Illegal warning �ag The input �le does not ontain any ode116 Illegal warning mode It is not possible to set the on�gurable error as spe-i�ed (depreated)117 Parser mode error Missing .fsm or .seq statement118 Illegal loal address label Use of loal address labe l is inorret (e.g. in a state)119 Extraneous mode swith201 Argument expeted Argument expeted for instrution202 Unexpeted argument Argument was not expeted203 Unknown Arg type Argument type is unknown by Arhiteture204 Illegal Argument Argument type is not allowed as operand205 Dword pseudo instru-tion evaluates to anon-onstant expression The .dword expression ontains a non-onstant valuesuh as a register.206 Non onstant operand The operand evaluates to a non-onstant expression,but a onstant (immediate) was expeted.301 Range error Immediate is out of range302 Immediate not allowed Immediate not allowed as operand401 Too many seq's Too many sequential instrutions in FSM statement402 Too many timers Too many timers in FSM statement403 Too many transitions Too many state-transitions in FSM statement404 Unknown FSM error General error in FSM405 Alignment error Instrution is illegally aligned406 Transition on�it Transitions is in on�it with only statement407 Timer on�it Timer is in on�it with FSM instrution408 State address is invalid(rosses bank boundrary) The �next state� part of a state transition statementrosses the memory bank boundrary.409 Timer statement is not al-lowed The state ontains a 32-bit immediate instution anda timer statement.410 Emask register hanged instate ontaining an onlystate transition The emask annot be hanged in a state that on-tains an only state transition. It results in illegalode.411 Emask register found in astate ontaining412 No state transitions501 Unknown register Register is not de�ned by iopasm502 Register not allowed A register annot be used as argument here503 Register not in arhite-ture Current arhiteture does not de�ne register504 Illegal register usage Register annot be used at this position505601 Unknown instrution Instrution is not known by arhiteture602 Sequential boundrary er-ror Sequential instrution is unaligned603 Instrution order Instrution order is not allowed604605606701 Unknown Sym�le format Symbol-�le format is not supported702 Arhiteture mismath Seleted arhiteture does not support the arhite-ture used when generating the �le (pertains to objet�les only)703 Inompatible objet �le Objet �le-format not supported by this version ofIOPASM704 No objet �le found Linker ould not �nd any objet �les801 Table 6: List of IOPASM error messages

11

