
IOPASM ManualJohan JörgensenJohan.Jorgensen�axis.
omMay 16, 2006

1

Contents1 Introdu
tion to IOPASM 12 IOPASM usage 12.1 Command-line swit
hes . 12.2 Ar
hite
ure spe
i�

ommand line options 32.3 Assembly-language syntax . 32.3.1 Assembler dire
tives . 32.3.2 Sequential mode syntax 32.3.3 FSM mode syntax . 52.4 C Ma
ro generation . 72.5 The FSM memory optimizer . 82.5.1 The FSM optimization pro
ess 9A Warnings & Errors 9

1 Introdu
tion to IOPASMThis manual
ontains a brief introdu
tion to IOPASM, the assembler for theI/O Pro
essor SPUs and MPU. The following issues are
overed:
• IOPASM
ommand line Des
ribes various
ommand line options and theirmeaning
• IOPASM syntax The assembler syntax
• Extending IOPASM A short how-to des
ribing the steps required to adda new pro
essor ar
hite
ture to IOPASM2 IOPASM usageIOPASM is the primary CUI1 based development tool for the I/O Pro
essor. Ithas the following features
• Fully integrated and seamless C-prepro
essing support
• Supports all SPU & MPU instru
tions
• Fully integrated linker
• FSM memory utilization optimizer
• Rule-based
ode generators2.1 Command-line swit
hesThe following swit
hes are re
ognized by the assembler:

−− (C prepro
essor dire
tives) Pass all
ommand line options after swit
hthis to the C prepro
essor. Should be spe
i�ed last on the
ommand line
−−allow-unde�ned-symbols Assign the value 0 to all symbols that is leftunde�ned in the
urrent program
−−ar
h (-M) ar
h Sele
t ar
hite
ture. Ar
h is the name of the ar
hite
tureand
an be either MPU or SPU
−−assemble-only (-
) Instru
ts the assembler to only run through the parserand intermediate
ode-generation stages. The output result will always bean obje
t �le (Implies: -t obje
t)
−e error-referen
e Causes the
on�gurable error referen
ed by error-referen
eto generate an error i.e. -eunaligned-64bit-inst1Chara
ter based U ser Interfa
e 1

−−generate-
-ma
ros �le Generate C-ma
ros for the spe
i�ed ar
hite
ture.These C-ma
ros
an be used to generate op-
odes in
-programs for aspe
i�
 ar
hite
ture (see se
tion 2.4 for further details)
−−in
lude-path (-I) IOPASM does not use any-prede�ned paths to in
lude-�les per default. Use this swit
h to add a path to the
pp dire
tives
−−list-�le �le Generate a program listing and store it in �le . The list �leshows the
ode generated by the assembler for a spe
i�
 input-�le andar
hite
ture
−−link-only (-l) Invoke the integrated linker and skip the parser. This is usedto link several obje
t �les into one binary �le
−m ma
hine−option Pass ar
hite
ture spe
i�
 option to the ba
k-end andswit
h it on i.e. -mauto-align-64bit-inst
−n error−referen
e The
on�gurable error referen
ed by error-referen
e willbe ignored and neither an error nor a warning is emitted (please see −eand −w)
−−namespa
e namespa
e Set the name spa
e for symbols. This is done byappending namespa
e to all symbols de�ned in the program
−−no-
pp Do not use the C pre-pro
essor
−−optimize-fsm Invoke the FSM memory optimizer
−−output-�le (-o) �le Save output in �le (required)
−−output-format (-t) format Spe
ify output-format. One of the followingpossible formats may be spe
i�ed:binary Plain binary format, for distribution useobje
t Save output as obje
t-�le.vlog64 Save output in VCS-readable format (64-bits/row)vlog256 Save output in VCS-readable format (256-bits/row)
−−preload-obje
t �le Load obje
t �le �le prior to running sour
e throughparser
−−preload-symbol-�le �le Load the symbol �le named �le prior to parsingthe sour
e �le
−−symbol-�le (-s) �le Spe
ify name of symbol-�le
−−symbol-�le-format format Spe
ify output format for symbol �le spe
i-�ed with −−symbol-�le.. The following formats are supported:plain Simple row-based format used by IOPASM2

header Save symbol de�nitions in C-header �le
−−verbose (-v) Be a little verbose. The assembler will emit additional infor-mation about assembler stages, optimization information et

−w error-referen
e The
on�gurable error/warning referen
ed by error-referen
ewill
ause a warning instead of an error (eg. -wunaligned-64bit-inst)
−−with-builtin-in
ludes Use the pre-de�ned built-in in
lude paths when
alling the C pre-pro
essor (these are set in the iopasm make�le)2.2 Ar
hite
ure spe
i�

ommand line optionsThe tables 1 and 2 list all the ma
hine dependent options that
an be passed tothe SPU and MPU ar
hite
ture. All of these options are invoked using the −mswit
h, and are swit
h o� by default. Th The SPU does not have any ma
hine-Command line swit
h Explanationauto-align-64bit-inst For
e the MPU
ode generator to align 64-bit in-stru
tions automati
allyTable 1: MPU spe
i�

ommand line �agsCommand line swit
h Explanation- No
ommand line swit
hes has been de�ned for theSPUTable 2: SPU spe
i�

ommand line �agsspe
i�
 options at present time. The FSM optimizer is partly built in to theba
k end, but
ertain parts of it is ar
hite
ture independent.2.3 Assembly-language syntaxThe assembly-language syntax used by IOPASM is very simple. Two di�er-ent modes are supported: FSM and sequential mode. The two modes
an bemixed in the same sour
e-�le seamlessly, provided that the sele
ted ar
hite
turesupports the FSM mode.2.3.1 Assembler dire
tivesThe assembler supports the following dire
tives:2.3.2 Sequential mode syntaxThe format of the sequential will not be des
ribed in great detail here as it
losely resembles that of the GNU Assembler for the CRIS ar
hite
ture (gas).3

Operand Des
ription.align boundrary Align next instru
tion to the boundrary spe
-i�ed by boundrary (measured in bits).dword expression Convert expression to a 32-bit integer andstore it at
urrent lo
ation.end Mark end of �le (Required).fsm Swit
h to FSM mode.org address Set PC for next instru
tion.seq Swit
h to sequential modeTable 3: Assembler dire
tives (pseudo operandsAs the reader of this do
ument is assumed to be familiar with assemblers andgas, only a brief introdu
tion will be given. For a list of supported instru
tionsand their operands, please refer to [1℄. Below is a simple example of sequential
ode: .seq ; 1 - not ne
essarya_label: moveq 0x10,r0 ; 2 - Hexade
imal numbermoveq $1A,R2 ; 3 - Same as abovemoveq 10,r5 ; 4 - De
imal immediatemoveq \%100_1001_11,r6 ; 5 - Binary immediateaddq (((7 + 4) << 3) / 2),r1,r2 ; 6 - Complex operandaddq r1,(((7 + 4) << 3) / 2),r2 ; 7 - operand transforms1: nop ; 8 - Lo
al labels are supportedaddq r7,(a_label << 2) + 4, r8 ; 9 - Labels
an be usedmoveq a_label,r4 ; 10 - Labels are immediatesba a_label ; 11 - Rule pre
ursornop ; 12 - Delay slot rulesba 1b ; 13 - Use of lo
al labels (ba
kward)nop ; 14 - standard delay slotba 2f ; 15 - Use of lo
al labels (forward)nop ; 16 - Standard delay slot2: nop ; 17 - Lo
al label definition.endThe example above exampli�es the following features of the assembler:
• Numbers
an be written in either hexade
imal, de
imal or binary format.The tokens:0x or $ are the pre�x for hexade
imal numbers% The % sign is the pre�x for binary digits. Binary digits
an be groupedthrough use of the _ i.e. the de
imal number 160
an be written as%1010_0000 in binary formDe
imal numbers do not require a pre�x4

• Operands
an be
omplex arithmetri
 expressions as long as the expressionevaluates to a
onstant on
e label addresses have been
al
ulated (line 6and 9)
• The assembler performs operand-transformations. Lines 6 and 7 will gen-erate exa
tly the same op-
ode. This is only supported in instru
tionswhere the result of the transformation is unambigous
• Labels are generally treated like immediates, however the value of a labelis not
al
ulated before stage 6 line 9
• Lo
al labels
an be reused. Lo
al labels are referen
ed by
ombining thenumber of the label with the letters ba
kward or f orward
• Certain instru
tions have di�erent rules asso
iated with them. All bran
hinstru
tions must have an instru
tion in the delay-slot otherwise a warningis generated.2.3.3 FSM mode syntaxThe FSM syntax looks like the following:state_name : optional_flags ; Optionalseq sequential instru
tion ; Optionaltimer instru
tion ; Optional0-8 state transitionsThe supported �ags are shown in table The states transitions are built fromInstru
tion �eld IOPASM Syntax Des
riptionbreak fsm_halt Set breakpoint �ag. Should generally not beuseddo_seq do_seq The sequential instru
tion will be exe
uted ev-ery
y
le while this state is a
tive. Do not usethis �ag if no sequential instru
tion is presentgo_seq go_seq Swit
h to sequential modesel_inputs inp = value Set value of input sele
tor. The value is a 4-bitnumber See [1℄sel_outputs outp = value Set value of output sele
tor. The value is an8-bit number See [1℄ Event Mask emask = value Set value of the Event mask register. Thevalue is a 4-bit number interpreted as a ve
torSee [1℄Event Update Mask umask = value Set value of event update �eld. The value is a4-bit number interpreted as a ve
tor See [1℄Table 4: Supported �ags in iopasm5

three di�erent
omponents a

ording to the following:input : outputs : next_stateThe input-�eld is
oded using the values 0, 1 and ?. The interpretation of thesevalues are 0, 1 and do not
are respe
tively.The output-�eld has an additional spe
i�er: p whi
h is short for pulse (apulse generally lasts one
y
le). Spe
ifying a p will result in a pulse beinggenerated on the output. An example is shown below0_1_1_? : ?_0_1_p : state_4The statement above will be interpreted a

ording to the following:1. Sele
ted input bits 3, 2, 1 and 0 should be 0, 1, 1, X (do not
are) respe
-tively2. Sele
ted output bits 2 and 1 will be set to 0 and 1 respe
tively. Bit 3 willremain un
hanged and a pulse will be generated on bit 03. Next state to be exe
uted is state_4Two spe
ial state transition statements
an also be used:
• Only state_4 - Used in
onjun
tion with sequential instru
tions to set theseq_only2 �ag and thus generate a
ompa
t instru
tion
• Always state_4 - This is a built-in ma
ro that will be expanded to thefollowing: ?_?_?_? : ?_?_?_? : state_4The last element of a state transition is the timer element. A timer statementhas the following syntax:timer timer_value : output_
onditions : next_stateThe only new element here is the timer_value. This �eld
an be either a registeror an integer. Thus both of the following statements are valid timer statements:timer r0 : 1_0_0_0 : state_4timer 1000 : 0_0_0_0 : state_5The priority of timers is implied by the relative position within the state-des
ription. If timer statements are pre
eeded by always or state-transitionstatements the priority is set to zero. This is shown in the example below:state_3 : timer r0 : 1_0_0_1 : state_4 ; Timer priority impli
itly set to 1state_4 :2For further details see
hapter 13 in the ETRAX FS designers referen
e6

1_0_0_1 : 1_0_1_1 : state_3timer 1000 : 1_1_1_0 : state_3 ; Timer priority impli
itly set to 0The assembler always starts in sequential mode. As the parser stage is totallyindependent from the
ode generation stages FSM-mode will be
orre
tly parsed.However the
ode generator will report an error if the sele
ted ar
hite
ture(sele
ted at invo
ation using the -M or −−ar
h swith
es) does not supportFSM
ode. The overall stru
ture of a sour
e�le is shown in the example below:; The assembler starts in sequential mode per defaultfoo: move r0,r1addq 10,r1,r2ba no_bar ; (bar is bran
h register)nop.fsm ; Swit
h to fsm modestate_1: do_seqinp = 4outp = 0xffseq addq 1,r1,r2only state_2state_2: timer r2 : ?_1_1_0 : state_1 ; Timer priority impli
itly set to 1.seq ; More sequential
odeno_bar: addq r2,10,r2ba foo.end ; File ends here2.4 C Ma
ro generationThe ability to generate C-ma
ros for all instru
tions and registers de�ned in thear
hite
ture of the SPU and MPUs is a unique feature of IOPASM. IOPASMgenerates these ma
ros a

ording to a set of built-in rules as
ertain instru
tionshave di�erent op-
odes depending on the type of operand. Three di�erent typesof operands are de�ned:I Argument is an integerR Argument is a registerS Argument is a spe
ial register 7

The operand type is
on
atenated to the ma
ro in order to di�erentiate ma
rosfrom ea
h other, thus indi
ating what type, and how many arguments the ma
roexpe
ts. Ea
h ma
ro is prepended by a pre�x whi
h is ar
hite
ture spe
i�
. Thepre�x for the MPU is MPU_ and the pre�x for the SPU is SPU_.As an example, let us assume that we want to use a ma
ro to generate theMPU-spe
i�
 op
ode for moveq 0x10,R0. This leads us to the following ma
ro:1. The ma
ro should work generate a valid MPU-op
ode, so the pre�x isMPU_2. The ma
ro should take two [ma
ro℄ arguments, as the instru
tion has twooperands.3. The instru
tion operands are one immediate and one register, so theargument-su�x of the ma
ro should be _IRThe ma
ro MPU_MOVEQ_IR(...) is thus the
orre
t ma
ro. To generate theop
ode for moveq 0x10,R0 and assign the result to the variable �op_
ode�, thema
ro should be invoked like this:op_
ode = MPU_MOVEQ_IR(0x10,R0);The ma
ros does not support any range-
he
king for immediates. However in-tegers are rounded down. If the integer is out of range, the used value shouldbe
onsidered to be erroneous.2.5 The FSM memory optimizerThis se
tion
overs the FSM memory optimizer. The se
tion only gives anintrodu
tory overview to the optimization algorithm, as it is deemed importantto gain a rough understanding of the algorithm in order to be able to use it. Tosummarize, the FSM optimizer serves two important purposes:
• Saves SPU memory through memory �hole� elimination
• Removes the limitations imposed by the SPUs banked memoryThe �holes� in the memory map is a result of the memory being fragmenteddue to the fa
t that the assembler will assemble
ode in the same sequen
e asit �nds it in the sour
e �le. As sequential and FSM
ode
an be freely mixedthe result is that the SPU memory is littered with �holes� required to align thevarious
ode fragments properly. The �rst step taken by the optimizer is thus torepa
k all sequential
ode at the low end of the memory map. It should be notedthat all org and align instru
tions are removed. All labels will be re
al
ulated,so the optimization pro
ess is opaque to the programmer.8

2.5.1 The FSM optimization pro
essThe FSM optimization pro
ess is a lot more
ompli
ated than the sequentialmemory optimization stage (whi
h is really just a relo
ation). In short thispro
ess
an be divided into 5 di�erent steps:State identi�
ation During this phase the various states are identi�ed and astate dependen
y matrix is builtState interdependen
y
al
ulation From the state dependen
y matrix anumber of sets are built. These sets
ontain all the states that are de-pendent on ea
h other. A spe
ial set for states that have no dependen
iesare also
reated. These sets are referred to as optimizer setsOptimizer set minimization During this phase all sets are mat
hed againstea
h other so that S0 ∪ S1 → S0 = {S0, S1}.Set partitioning The number of sets left after the set minimization pro
essis then partitioned on the remaining amount of memory. The algorithm
ontinuously tries to �t the largest possible set into the remaining area ofthe memory banks.State layout During this phase states are laid out in memory so that ea
hrow in memory is
ompletely �lled. States are sele
ted from the partitionsgiven by the set partitioning stateEmpiri
al data shows that the state optimization pro
ess will save a pro-grammer around 15% of the SPU memory. As an additional bene�t the pro-grammer does not have to think about where in the memory the various statesare pla
ed making it possible to write
ode that is totally relo
ation independent.The negative side e�e
t indu
ed by the optimizer is that all
ode is
om-pletely reorganized. This makes the
ode rather hard to follow as the
ode isno longer formatted in a human readable manner.Referen
es[1℄ Axis Communi
ations AB, ETRAX FS Designers referen
e,http://developer.axis.
om/do
/hw/etraxfs/des_ref/des_ref_060120.pdf,2006A Warnings & ErrorsWarnings and errors are divided into groups. Tables 6 and 5 list the variouserrors and warnings and provides a brief explanation for the error. All warningsare
on�gurable and their behaviour
an be
ontrolled by the −e, −w and −nswit
hes. 9

Referen
e name Default state Des
riptiondest-reg-usage o� Destination register may be used in an in
orre
t way(i.e. forwarding would use the old register)delay-slot-usage o� Delay slot may hold in
orre
t insstru
tion sequen
eunaligned-64bit-inst o� The 64-bit insstru
tion is not aligned to a 64-bitboundrarystate-terminated o� The state might have been prematurely terminatedby a �.fsm� statementreti-rw-rr-sequen
e Error rw instru
tion found in delay slot of �reti�. If thenext instru
tion is an �rw� instru
tion the MPU will
rashTable 5: Con�gurable errors, their referen
e names and their default state

10

Error # Error Des
ription101 Unsupported ar
hite
ture Ar
hite
ture spe
i�ed as an argument to -M or
−−ar
h is not supported102 Fork failed This is an internal IOPASM error indi
ating that thesystem-
all fork() failed. This should never happen103
pp exe
ution failed This is an internal IOPASM error indi
ating that
pp
ould not be exe
uted104 Report bug Simple
at
h-all error, indi
ating that IOPASMs in-ternal databases are in
onsistent105
pp stage failed
pp did not exit su

essfully. Probably due to aparser-error106 memory region used An already used memory region is being reused107 Invalid
ode size Size of generated
ode does not mat
h the size
al-
ulated108 Cannot write �le Cannot write to �le109 Syntax error Syntax error in sour
e �le110 Unde�ned label Label was not de�ned111 Input �le missing The assembler did not �nd an input �le112 Unde�ned forward lo
allabel Forward referen
ing lo
al label not found before endof �le113 Unde�ned ba
kward lo
allabel Ba
kward referensing lo
al label not found before af-ter start of �le114 Input �le is empty Assembler invoked on an empty input �le115 Illegal warning �ag The input �le does not
ontain any
ode116 Illegal warning mode It is not possible to set the
on�gurable error as spe
-i�ed (depre
ated)117 Parser mode error Missing .fsm or .seq statement118 Illegal lo
al address label Use of lo
al address labe l is in
orre
t (e.g. in a state)119 Extraneous mode swit
h201 Argument expe
ted Argument expe
ted for instru
tion202 Unexpe
ted argument Argument was not expe
ted203 Unknown Arg type Argument type is unknown by Ar
hite
ture204 Illegal Argument Argument type is not allowed as operand205 Dword pseudo instru
-tion evaluates to anon-
onstant expression The .dword expression
ontains a non-
onstant valuesu
h as a register.206 Non
onstant operand The operand evaluates to a non-
onstant expression,but a
onstant (immediate) was expe
ted.301 Range error Immediate is out of range302 Immediate not allowed Immediate not allowed as operand401 Too many seq's Too many sequential instru
tions in FSM statement402 Too many timers Too many timers in FSM statement403 Too many transitions Too many state-transitions in FSM statement404 Unknown FSM error General error in FSM405 Alignment error Instru
tion is illegally aligned406 Transition
on�i
t Transitions is in
on�i
t with only statement407 Timer
on�i
t Timer is in
on�i
t with FSM instru
tion408 State address is invalid(
rosses bank boundrary) The �next state� part of a state transition statement
rosses the memory bank boundrary.409 Timer statement is not al-lowed The state
ontains a 32-bit immediate instu
tion anda timer statement.410 Emask register
hanged instate
ontaining an onlystate transition The emask
annot be
hanged in a state that
on-tains an only state transition. It results in illegal
ode.411 Emask register found in astate
ontaining412 No state transitions501 Unknown register Register is not de�ned by iopasm502 Register not allowed A register
annot be used as argument here503 Register not in ar
hite
-ture Current ar
hite
ture does not de�ne register504 Illegal register usage Register
annot be used at this position505601 Unknown instru
tion Instru
tion is not known by ar
hite
ture602 Sequential boundrary er-ror Sequential instru
tion is unaligned603 Instru
tion order Instru
tion order is not allowed604605606701 Unknown Sym�le format Symbol-�le format is not supported702 Ar
hite
ture mismat
h Sele
ted ar
hite
ture does not support the ar
hite
-ture used when generating the �le (pertains to obje
t�les only)703 In
ompatible obje
t �le Obje
t �le-format not supported by this version ofIOPASM704 No obje
t �le found Linker
ould not �nd any obje
t �les801 Table 6: List of IOPASM error messages

11

