[IOPASM Manual

Johan Jorgensen
Johan.Jorgensen@axis.com

May 16, 2006

Contents
1 Introduction to IOPASM

2 IOPASM usage
2.1 Command-line switches . .

2.2 Architecure specific command line options

2.3 Assembly-language syntax .
2.3.1 Assembler directives

2.3.2 Sequential mode syntax L

2.3.3 FSM mode syntax .
2.4 C Macro generation
2.5 The FSM memory optimizer

2.5.1 The FSM optimization process

A Warnings & Errors

O 00 ~J Ut W W W W = =]

©

1 Introduction to IOPASM

This manual contains a brief introduction to IOPASM, the assembler for the
I/O Processor SPUs and MPU. The following issues are covered:

e JOPASM command line Describes various command line options and their
meaning

e JOPASM syntaz The assembler syntax

e Extending IOPASM A short how-to describing the steps required to add
a new processor architecture to IOPASM

2 TOPASM usage

IOPASM is the primary CUI' based development tool for the 1/O Processor. It
has the following features

Fully integrated and seamless C-preprocessing support

Supports all SPU & MPU instructions

Fully integrated linker

e FSM memory utilization optimizer

Rule-based code generators

2.1 Command-line switches

The following switches are recognized by the assembler:

—— (C preprocessor directives) Pass all command line options after switch
this to the C preprocessor. Should be specified last on the command line

——allow-undefined-symbols Assign the value 0 to all symbols that is left
undefined in the current program

——arch (-M) arch Select architecture. Arch is the name of the architecture
and can be either MPU or SPU

——assemble-only (-c) Instructs the assembler to only run through the parser
and intermediate code-generation stages. The output result will always be
an object file (Implies: -t object)

—e error-reference Causes the configurable error referenced by error-reference
to generate an error i.e. -eunaligned-64bit-inst

I Character based User Interface

——generate-c-macros file Generate C-macros for the specified architecture.
These C-macros can be used to generate op-codes in c-programs for a
specific architecture (see section 2.4 for further details)

——include-path (-I) IOPASM does not use any-predefined paths to include-
files per default. Use this switch to add a path to the cpp directives

——list-file file Generate a program listing and store it in file. The list file
shows the code generated by the assembler for a specific input-file and
architecture

——link-only (-1) Invoke the integrated linker and skip the parser. This is used
to link several object files into one binary file

—m machine—option Pass architecture specific option to the back-end and
switch it on i.e. -mauto-align-64bit-inst

—n error—reference The configurable error referenced by error-reference will
be ignored and neither an error nor a warning is emitted (please see —e
and —w)

——namespace namespace Set the name space for symbols. This is done by
appending namespace to all symbols defined in the program

——no-cpp Do not use the C pre-processor
——optimize-fsm Invoke the FSM memory optimizer
——output-file (-0) file Save output in file (required)

——output-format (-t) format Specify output-format. One of the following
possible formats may be specified:

binary Plain binary format, for distribution use

object Save output as object-file.

vlog64 Save output in VCS-readable format (64-bits/row)
vlog256 Save output in VCS-readable format (256-bits/row)

——preload-object file Load object file file prior to running source through
parser

——preload-symbol-file file Load the symbol file named file prior to parsing
the source file

——symbol-file (-s) file Specify name of symbol-file

——symbol-file-format format Specify output format for symbol file speci-
fied with ——symbol-file.. The following formats are supported:

plain Simple row-based format used by IOPASM

header Save symbol definitions in C-header file

——verbose (-v) Be a little verbose. The assembler will emit additional infor-
mation about assembler stages, optimization information etc

—w error-reference The configurable error/warning referenced by error-reference
will cause a warning instead of an error (eg. -wunaligned-64bit-inst)

——with-builtin-includes Use the pre-defined built-in include paths when
calling the C pre-processor (these are set in the iopasm makefile)

2.2 Architecure specific command line options

The tables 1 and 2 list all the machine dependent options that can be passed to
the SPU and MPU architecture. All of these options are invoked using the —m
switch, and are switch off by default. Th The SPU does not have any machine-

Command line switch | Explanation
auto-align-64bit-inst Force the MPU code generator to align 64-bit in-
structions automatically

Table 1: MPU specific command line flags

Command line switch | Explanation
- No command line switches has been defined for the
SPU

Table 2: SPU specific command line flags

specific options at present time. The FSM optimizer is partly built in to the
back end, but certain parts of it is architecture independent.

2.3 Assembly-language syntax

The assembly-language syntax used by IOPASM is very simple. Two differ-
ent modes are supported: FSM and sequential mode. The two modes can be
mixed in the same source-file seamlessly, provided that the selected architecture
supports the FSM mode.

2.3.1 Assembler directives

The assembler supports the following directives:

2.3.2 Sequential mode syntax

The format of the sequential will not be described in great detail here as it
closely resembles that of the GNU Assembler for the CRIS architecture (gas).

Operand

Description

.align boundrary
.dword expression

.end
.fsm
.org address
.seq

Align next instruction to the boundrary spec-
ified by boundrary (measured in bits)
Convert ezxpression to a 32-bit integer and
store it at current location

Mark end of file (Required)

Switch to FSM mode

Set PC for next instruction

Switch to sequential mode

Table 3: Assembler directives (pseudo operands

As the reader of this document is assumed to be familiar with assemblers and
gas, only a brief introduction will be given. For a list of supported instructions
and their operands, please refer to [1]. Below is a simple example of sequential

code:
.seq ; 1 - not necessary
a_label: moveq 0x10,r0 ; 2 - Hexadecimal number
moveq $1A,R2 ; 3 - Same as above
moveq 10,rb ; 4 - Decimal immediate
moveq \%100_1001_11,r6 ; 5 - Binary immediate
addq (((7 + 4) << 3) / 2),r1,r2 ; 6 - Complex operand
addq r1,(((7 + 4) << 3) / 2),r2 ; 7 - operand transforms
1: nop ; 8 - Local labels are supported
addq r7,(a_label << 2) + 4, r8 ; 9 - Labels can be used
moveq a_label,r4 ; 10 - Labels are immediates
ba a_label ; 11 - Rule precursor
nop ; 12 - Delay slot rules
ba 1b ; 13 - Use of local labels (backward)
nop ; 14 - standard delay slot
ba 2f ; 15 - Use of local labels (forward)
nop ; 16 - Standard delay slot
2: nop ; 17 - Local label definition
.end

The example above examplifies the following features of the assembler:

e Numbers can be written in either hexadecimal, decimal or binary format.

The tokens:

0x or $ are the prefix for hexadecimal numbers

% The % sign is the prefix for binary digits. Binary digits can be grouped
through use of the i.e. the decimal number 160 can be written as
%1010 _ 0000 in binary form

Decimal numbers do not require a prefix

e Operands can be complex arithmetric expressions as long as the expression
evaluates to a constant once label addresses have been calculated (line 6

and 9)

e The assembler performs operand-transformations. Lines 6 and 7 will gen-
erate exactly the same op-code. This is only supported in instructions
where the result of the transformation is unambigous

e Labels are generally treated like immediates, however the value of a label
is not calculated before stage 6 line 9

e Local labels can be reused. Local labels are referenced by combining the
number of the label with the letters backward or forward

e Certain instructions have different rules associated with them. All branch
instructions must have an instruction in the delay-slot otherwise a warning
is generated.

2.3.3 FSM mode syntax

The FSM syntax looks like the following;:

state_name :

optional_flags

; Optional

seq sequential instruction ; Optional

timer instruction
0-8 state transitions

; Optional

The supported flags are shown in table The states transitions are built from

Instruction field IOPASM Syntax

Description

break
do_seq

g0 seq

sel inputs
sel outputs

Event Mask

fsm_halt
do_seq
go_seq

inp = value
outp = value

emask = value

Event Update Mask | umask = value

Set breakpoint flag. Should generally not be
used

The sequential instruction will be executed ev-
ery cycle while this state is active. Do not use
this flag if no sequential instruction is present
Switch to sequential mode

Set value of input selector. The value is a 4-bit
number See [1]

Set value of output selector. The wvalue is an
8-bit number See [1]4

Set value of the Event mask register. The
value is a 4-bit number interpreted as a vector
See [1]

Set value of event update field. The value is a
4-bit number interpreted as a vector See [1]

Table 4: Supported flags in iopasm

three different components according to the following:
wnput : outputs : next state

The input-field is coded using the values 0, 1 and 7. The interpretation of these
values are 0, 1 and do not care respectively.

The output-field has an additional specifier: p which is short for pulse (a
pulse generally lasts one cycle). Specifying a p will result in a pulse being
generated on the output. An example is shown below

01 17:7 01 p:state 4
The statement above will be interpreted according to the following;:

1. Selected input bits 3, 2, 1 and 0 should be 0, 1, 1, X (do not care) respec-
tively

2. Selected output bits 2 and 1 will be set to 0 and 1 respectively. Bit 3 will
remain unchanged and a pulse will be generated on bit 0

3. Next state to be executed is state 4
Two special state transition statements can also be used:

e Only state_ 4 - Used in conjunction with sequential instructions to set the
seq_only? flag and thus generate a compact instruction

o Always state 4 - This is a built-in macro that will be expanded to the
following: ¢ ¢ ¢ 2 :9 ¢ 2 2 : state 4

The last element of a state transition is the timer element. A timer statement
has the following syntax:

timer timer wvalue : output_conditions : next_state

The only new element here is the timer_wvalue. This field can be either a register
or an integer. Thus both of the following statements are valid timer statements:

timer rO : 1_0_0_0 : state_4
timer 1000 : 0_0_0_0 : state_b

The priority of timers is implied by the relative position within the state-
description. If timer statements are preceeded by always or state-transition
statements the priority is set to zero. This is shown in the example below:

state_3 :
timer rO : 1.0_0_1 : state_4 ; Timer priority implicitly set to 1

state_4 :

2For further details see chapter 13 in the ETRAX FS designers reference

1.0.0_1 : 1.0_1_1 : state_3

timer 1000 : 1_1_1_0 :

state_3 ; Timer priority implicitly set to O

The assembler always starts in sequential mode. As the parser stage is totally
independent from the code generation stages FSM-mode will be correctly parsed.
However the code generator will report an error if the selected architecture
(selected at invocation using the -M or ——arch swithces) does not support
FSM code. The overall structure of a sourcefile is shown in the example below:

; The assembler starts in sequential mode per default

foo:

state_1:

state_2:

no_bar:

move r0O,ril
addq 10,r1,r2

ba no_bar ; (bar is branch r
nop

.fsm ; Switch to fsm mode
do_seq

inp = 4

outp = Oxff

seq addq 1,r1,r2
only state_2

timer r2 : 7_1_1_0 : state_1

.seq ; More sequential code
addq r2,10,r2
ba foo

.end ; File ends here

2.4 C Macro generation

egister)

; Timer priority implicitly set to 1

The ability to generate C-macros for all instructions and registers defined in the
architecture of the SPU and MPUs is a unique feature of IOPASM. IOPASM
generates these macros according to a set of built-in rules as certain instructions
have different op-codes depending on the type of operand. Three different types
of operands are defined:

I Argument is an integer

R Argument is a register

S Argument is a special register

The operand type is concatenated to the macro in order to differentiate macros
from each other, thus indicating what type, and how many arguments the macro
expects. Each macro is prepended by a prefix which is architecture specific. The
prefix for the MPU is MPU and the prefix for the SPU is SPU .

As an example, let us assume that we want to use a macro to generate the
MPU-specific opcode for moveq 0x10,R0. This leads us to the following macro:

1. The macro should work generate a valid MPU-opcode, so the prefix is
MPU _

2. The macro should take two [macro| arguments, as the instruction has two
operands.

3. The instruction operands are one immediate and one register, so the
argument-suffix of the macro should be IR

The macro MPU_MOVEQ_IR(...) is thus the correct macro. To generate the
opcode for moveq 0x10,R0 and assign the result to the variable “op_code”, the
macro should be invoked like this:

op_code = MPU_MOVEQ_IR(0x10,R0);

The macros does not support any range-checking for immediates. However in-
tegers are rounded down. If the integer is out of range, the used value should
be considered to be erroneous.

2.5 The FSM memory optimizer

This section covers the FSM memory optimizer. The section only gives an
introductory overview to the optimization algorithm, as it is deemed important
to gain a rough understanding of the algorithm in order to be able to use it. To
summarize, the FSM optimizer serves two important purposes:

e Saves SPU memory through memory “hole” elimination

e Removes the limitations imposed by the SPUs banked memory

The “holes” in the memory map is a result of the memory being fragmented
due to the fact that the assembler will assemble code in the same sequence as
it finds it in the source file. As sequential and FSM code can be freely mixed
the result is that the SPU memory is littered with “holes” required to align the
various code fragments properly. The first step taken by the optimizer is thus to
repack all sequential code at the low end of the memory map. It should be noted
that all org and align instructions are removed. All labels will be recalculated,
so the optimization process is opaque to the programmer.

2.5.1 The FSM optimization process

The FSM optimization process is a lot more complicated than the sequential
memory optimization stage (which is really just a relocation). In short this
process can be divided into 5 different steps:

State identification During this phase the various states are identified and a
state dependency matrix is built

State interdependency calculation From the state dependency matrix a
number of sets are built. These sets contain all the states that are de-
pendent on each other. A special set for states that have no dependencies
are also created. These sets are referred to as optimizer sets

Optimizer set minimization During this phase all sets are matched against
each other so that Sy U S; — Sp = {So, S1}-

Set partitioning The number of sets left after the set minimization process
is then partitioned on the remaining amount of memory. The algorithm
continuously tries to fit the largest possible set into the remaining area of
the memory banks.

State layout During this phase states are laid out in memory so that each
row in memory is completely filled. States are selected from the partitions
given by the set partitioning state

Empirical data shows that the state optimization process will save a pro-
grammer around 15% of the SPU memory. As an additional benefit the pro-
grammer does not have to think about where in the memory the various states
are placed making it possible to write code that is totally relocation independent.

The negative side effect induced by the optimizer is that all code is com-
pletely reorganized. This makes the code rather hard to follow as the code is
no longer formatted in a human readable manner.

References

[1] Axis Communications AB, ETRAX FS Designers reference,
http://developer.axis.com/doc/hw/etraxfs/des ref/des ref 060120.pdf,
2006

A Warnings & Errors

Warnings and errors are divided into groups. Tables 6 and 5 list the various
errors and warnings and provides a brief explanation for the error. All warnings
are configurable and their behaviour can be controlled by the —e, —w and —n
switches.

Reference name

Default state

Description

dest-reg-usage

delay-slot-usage
unaligned-64bit-inst

state-terminated

reti-rw-rr-sequence

off

off
off

off

Error

Destination register may be used in an incorrect way
(i.e. forwarding would use the old register)

Delay slot may hold incorrect insstruction sequence
The 64-bit insstruction is not aligned to a 64-bit
boundrary

The state might have been prematurely terminated
by a “.fsm” statement

rw instruction found in delay slot of “reti”. If the
next instruction is an “rw” instruction the MPU will
crash

Table 5: Configurable errors, their reference names and their default state

10

Error # | Error Description
101 | Unsupported architecture | Architecture specified as an argument to -M or
——arch is not supported

102 | Fork failed This is an internal IOPASM error indicating that the

system-call fork () failed. This should never happen

103 | cpp execution failed This is an internal IOPASM error indicating that cpp

could not be executed

104 | Report bug Simple catch-all error, indicating that IOPASMs in-

ternal databases are inconsistent

105 | cpp stage failed cpp did not exit successfully. Probably due to a

parser-error

106 | memory region used An already used memory region is being reused

107 | Invalid code size Size of generated code does not match the size cal-

culated

108 | Cannot write file Cannot write to file

109 | Syntax error Syntax error in source file

110 | Undefined label Label was not defined

111 | Input file missing The assembler did not find an input file

112 | Undefined forward local | Forward referencing local label not found before end
label of file

113 | Undefined backward local | Backward referensing local label not found before af-
label ter start of file

114 | Input file is empty Assembler invoked on an empty input file

115 | Illegal warning flag The input file does not contain any code

116 | Tllegal warning mode It is not possible to set the configurable error as spec-

ified (deprecated)

117 | Parser mode error Missing .fsm or .seq statement

118 | Illegal local address label | Use of local address labe 1 is incorrect (e.g. in a state

)

119 | Extraneous mode switch

201 | Argument expected Argument expected for instruction

202 | Unexpected argument, Argument was not expected

203 | Unknown Arg type Argument type is unknown by Architecture

204 | Illegal Argument Argument type is not allowed as operand

205 | Dword pseudo instruc- | The .dword expression contains a non-constant value
tion evaluates to a | such as a register.
non-constant expression

206 | Non constant operand The operand evaluates to a non-constant expression,

but a constant (immediate) was expected.

301 | Range error Immediate is out of range

302 | Immediate not allowed Immediate not allowed as operand

401 | Too many seq’s Too many sequential instructions in FSM statement

402 | Too many timers Too many timers in FSM statement

403 | Too many transitions Too many state-transitions in FSM statement

404 | Unknown FSM error General error in FSM

405 | Alignment error Instruction is illegally aligned

406 | Transition conflict Transitions is in conflict with only statement

407 | Timer conflict Timer is in conflict with FSM instruction

408 | State address is invali(]i1 The “next state part of a state transition statement
(crosses bank boundrary) | crosses the memory bank boundrary.

409 | Timer statement is not al- | The state contains a 32-bit immediate instuction and
lowed a timer statement.

410 | Emask register changed in | The emask cannot be changed in a state that con-
state containing an only | tains an only state transition. It results in illegal
state transition code.

411 | Emask register found in a
state containing

412 | No state transitions

501 | Unknown register Register is not defined by iopasm

502 | Register not allowed A register cannot be used as argument here

